

. المفتبر الفليمي لغمص المعدات الكهربانية

GCC Lab, in a joint venture with UL, established the first and most sophisticated independent Renewable Innovation center in MENA region; namely Gulf Renewables Lab (GRL), to enable major transformation in utilizing renewable energy resources, including solar, wind and others.

Introduction

Services

Solar PV Product Qualification

Bankability and Engineering

Services

Research and Development

Training and Certification

Contact Us

GCC Electrical **Testing Laboratory** ألمفتبر الفليجي لغعص المعدات الكهربانية

GCC Electrical Testing Laboratory المفتبر الفليمي لغمص المعدات الكهربانية

GRL is a unique localization enabler that provides advanced Testing, Inspection and Certification (TIC) services, for components, materials, products and systems, covering the entire value chain. The GRL services portfolio also covers advisory services, resources assessment and bankability studies, technical services, performance assessment, specialized training and certification and RandD services.

Based in KSA — Eastern Provenance — Third Industrial City, GRL will contribute fundamentally to the achievement of localizing renewables knowledge, manufacturing, standards, innovation and promoting alternative energy applications inline with the regional climatic conditions. GRL services covering GCC countries, Iraq, Yemen, Jorden, Lebanon and Egypt.

Mission

Advance safety, efficiency and innovation in the renewables sector by delivering world class services and solutions enabled by highly skilled people, efficient workflows and state of the art operating facilities.

Vision

Achieve global leadership in testing, inspection, certification, consultation, and innovation in renewables sector.

Solar has been proven as a cost effective and reliable energy source. Technological advancements over the last five years have placed solar energy in a firm position to compete with conventional power generation technologies. GCC region has a vast uninhabited land area with high solar resources presenting opportunities for Solar PV Systems.

Polymeric materials are essential to the fabrication of PV modules and used in critical components such as substrates, encapsulants, back sheets and adhesives. Design and safety compliance with established standards minimizes risk of failure and helps ensure safe operation, covering such areas as flammability, resistance to ignition, thermal endurance and electrical properties.

Visual Inspection Test

Objective

To detect any visual defects in the module under no less than 1000 Lux.

Examples: Broken, cracks, Bubbles or delamination, cells overlaps.

Equipment

- Inspection board (vertical)
- Camera
- Caliper
- Luxmeter

Reference

IEC/UL 61215 and IEC/UL 61730

Performance Measurement

Objective

- Verify Power, voltage and current at STC (1000 W/m2 ±10 %, 25 °C cell temperature)
- Determine electrical parameters of PV modules including power, voltage and current at various conditions.

Equipment

AAA+ Pulse sun simulator

Reference

IEC/UL 61215 and IEC/UL 61730

Wet Leakage Test

Objective

To evaluate insulation under wet operating conditions and verify that moisture from rain, fog, melted snow do not enter the active parts.

Equipment

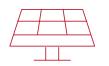
- Insulation resistance tester
- High voltage D.C. source
- Water container (for standard and oversized modules)

Reference

IEC/UL 61215 and IEC/UL 61730

Insulation Test

Objective


To determine whether or not the module is sufficiently well insulated between live parts and accessible parts.

Equipment

- Insulation resistance tester
- High voltage D.C. source
- Dry table

Reference

IEC/UL 61215 and IEC/UL 61730

Solar PV Product Qualification

Thermal Cycling Test

Objective

To determine the ability of the module to withstand thermal mismatch, fatigue and other stresses caused by repeated changes of temperature.

Equipment

- · Climatic chamber (simulates heat, cold, humidity).
- Power supply rack and temperature sensors

Reference

IEC/UL 61215 and IEC/UL 61730

Humidity Freeze Test

Objective

To determine the ability of the module to withstand the effects of high temperature and humidity followed by zero temperature.

Equipment

Climatic chamber - Power supply rack and temperature sensors

Reference

IEC/UL 61215 and IEC/UL 61730

 $8 ag{9}$

Damp Heat Test

Objective

To determine the ability of the module to withstand the effects of long-term penetration of humidity

Equipment

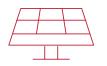
Climatic chamber-Temperature sensors

Reference

IEC/UL 61215 and IEC/UL 61730

Hail Test

Objective


To verify that the module is capable of withstanding the impact of hail.

Equipment

- Launcher of ice ball
- A Freezer
- Control system

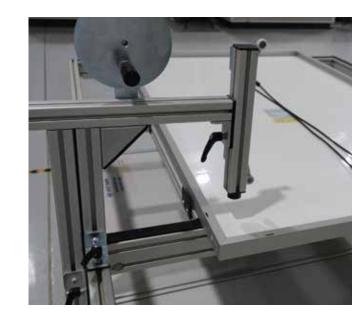
Reference

IEC 61215

Solar PV Product Qualification

Robustness of Termination Test

Objective


To determine the terminations, attachment of terminations, and attachment of cables to body of module will withstand stresses that are likely to be applied during normal assembly or handling operations.

Equipment

- Set of weights
- Fixing device
- Table
- Torque force sensor

Reference

IEC/UL 61215 and IEC/UL 61730

Static/Dynamic Mechanical Load Test

Objective

To determine the ability of the module to withstand a minimum static load under certain installations and climate.

Equipment

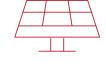
- Instrument to monitor the electrical continuity of the module during the test.
- A rigid test base for mounting the PV module and apply the load

Reference

IEC/UL 61215 and IEC/UL 61730

Bypass Diode Test

Objective


To assess the adequacy of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility

Equipment

- Heating table
- Instrument to apply multiple of rated current and to measure the voltage drop in diode

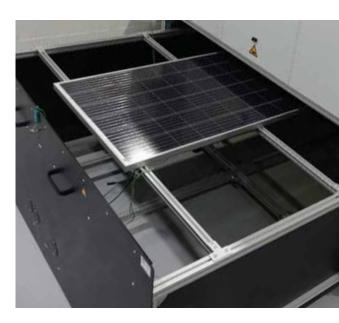
Reference

IEC/UL 61215 and IEC/UL 61730

Solar PV Product Qualification

UV Preconditioning Test

Objective


- To evaluate the effect of UV radiation on the module.
- Focus on material made from polymers such as EVA and back sheet
- To precondition the module with UV radiation before climatic tests.
- Maintain module

Equipment

UV Chamber

Reference

IEC 61215 and IEC 61730

Tests in Outdoor advanced System

Objective

To perform wide range of outdoor assessments such as:

- Hotspot Endurance test.
- Temperature test.
- Outdoor Exposure test.
- Stabilization test

Equipment

- Open rack to support PV module
- Solar irradiation senor
- Resistive load to measure MPPT
- Monitoring system

Reference

IEC/UL 61215 and IEC/UL 61730

Continuity Test

Objective

To verify the continuous path between accessible conductive parts that are in direct contact with each other. (ie metallic frame)

Equipment

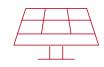
- Constant current supply
- Voltmeter
- Dry table

Reference

IEC 61730

Reverse Current Test

Objective


To determine the acceptability of the risk of ignition or fire under reverse current fault conditions the electrical conductors and the cells of the PV module are forced to dissipate energy as heat prior to circuit interruption by an over-current protector installed in the system.

Equipment

- Constant current supply
- Voltmeter
- Dry table

Reference

IEC 61730

Solar PV Product Qualification

Accessibility Test

Objective

To provide confidence that risk To determine if PV modules are constructed to provide adequate protection against accessibility to hazardous live parts (> 35 V).

Equipment

- A Cylindrical test Fixture
- Ohm meter or continuity tester

Reference

IEC 61730

Module Breakage Test

Objective

To provide confidence that risk of physical injuries can be minimized if the PV module is broken in its specified installation.

Equipment

- Mounted frame
- Impactor
- Lifting system

Reference

IEC 61730

Peel off Test

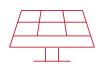
Objective

Purpose of this test is to qualify insulation as a cemented joint. It shall provide confidence regarding the durability of the adhesion between different layers of rigid-to-flexible or flexible to-flexible constructions of the PV module stack.

Equipment

- Tensile testing machine,
- Fixture, for holding the test piece

Reference


IEC 61730

. المفتبر الفليمي لغمص المعدات الكهربانية

Solar PV Product Qualification

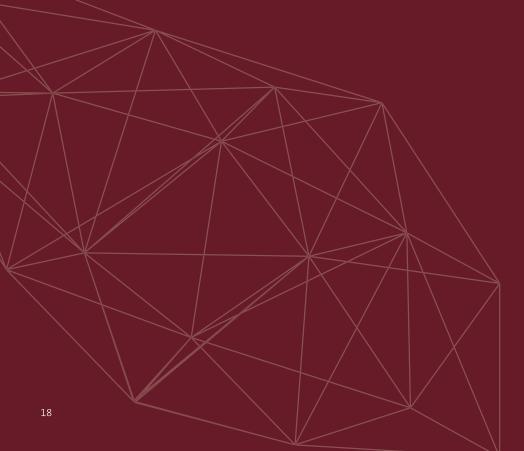
Cut Susceptibility Test

Objective

To determine whether any front and rear surfaces of the PV module made of polymeric materials are capable of withstanding routine handling during installation and maintenance without exposing personnel to the danger of electric shock.

Equipment

The defined shaped object shall be a 0,64 mm ± 0,05 mm thick hardened steel blade sufficiently rigid as not to bend sideways during the test.


Reference

IEC 61730

Special Tests

Electro Luminescence (E.L) Imaging

Objective

Looking for invisible cracks or micro cracks of the PV cells, defects and failures

Equipment

Special camera

Reference

IEC 60904-13

Salt Mist Test

Objective

- To determine the resistance of different PV modules to corrosion from salt mist
- 6 Severities test scenarios according to site condition

Equipment

- Salt mist chamber
- NaCl solution

Reference

IEC 61701

Potential Induced Degradation Test

Objective

To perform a repeatable test which evaluates the crystalline silicon PV module's performance against system voltage stress. Screen for PID susceptibility of Si solar cells in a given module package (glass, encapsulant) with related PID safeguards bypassed.

Equipment

- High voltage source
- Temperature sensors
- Combined temperature and humidity sensor

Reference

IEC TS 62804-1

On-Site Tests

Objective

To determine the possible locations that could cause a hotspot which might lead to fire hazard.

- Shadowing or soiling
- Mismatched cells
- Faulty cells
- Poor soldering

Equipment

Special infrared camera

Reference

IEC 61215, IEC 61730

Portable I-V Tracer

Objective

- Verify Power, voltage and current at STC conditions.
- To measure the current, voltage and power of the each module, row and entire string.

Equipment

Portable IV tracer

Reference

IEC 61215, IEC 61730

Electro Luminescence (E.L) Imaging

Objective

Looking for invisible cracks or micro cracks of the PV cells, defects and failures

Equipment

Special camera

Reference

IEC 60904-13

20

gulfrl.com

Gulf Renewable Laboratory, GRL
3rd Industrial City, Dammam, Kingdom of Saudi Arabia
P.O. Box 39558 Khobar – 31942 Wasel Address: Building No. 2860
Zip code: 32235 Additional No. 816
Email: sales@gulfrl.com
Tel. 013 807 0310 - 013 807 0319